Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control.

نویسندگان

  • Régis Parmentier
  • Hiroshi Ohtsu
  • Zahia Djebbara-Hannas
  • Jean-Louis Valatx
  • Takehiko Watanabe
  • Jian-Sheng Lin
چکیده

The hypothesis that histaminergic neurons are involved in brain arousal is supported by many studies. However, the effects of the selective long-term abolition of histaminergic neurons on the sleep-wake cycle, indispensable in determining their functions, remain unknown. We have compared brain histamine(HA)-immunoreactivity and the cortical-EEG and sleep-wake cycle under baseline conditions or after behavioral or pharmacological stimuli in wild-type (WT) and knock-out mice lacking the histidine decarboxylase gene (HDC-/-). HDC-/-mice showed an increase in paradoxical sleep, a decrease in cortical EEG power in theta-rhythm during waking (W), and a decreased EEG slow wave sleep/W power ratio. Although no major difference was noted in the daily amount of spontaneous W, HDC-/-mice showed a deficit of W at lights-off and signs of somnolence, as demonstrated by a decreased sleep latencies after various behavioral stimuli, e.g., WT-mice placed in a new environment remained highly awake for 2-3 hr, whereas HDC-/-mice fell asleep after a few minutes. These effects are likely to be attributable to lack of HDC and thus of HA. In WT mice, indeed, intraperitoneal injection of alpha-fluoromethylhistidine (HDC-inhibitor) caused a decrease in W, whereas injection of ciproxifan (HA-H3 receptor antagonist) elicited W. Both injections had no effect in HDC-/-mice. Moreover, PCR and immunohistochemistry confirmed the absence of the HDC gene and brain HA-immunoreactive neurons in the HDC-/-mice. These data indicate that disruption of HA-synthesis causes permanent changes in the cortical-EEG and sleep-wake cycle and that, at moments when high vigilance is required (lights off, environmental change em leader ), mice lacking brain HA are unable to remain awake, a prerequisite condition for responding to behavioral and cognitive challenges. We suggest that histaminergic neurons also play a key role in maintaining the brain in an awake state faced with behavioral challenges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deletion of histidine decarboxylase (HDC) enhances the antinociceptive effects of orexin A in the central nervous system

It has long been established that histamine plays a role as a mediator of inflammation. From numerous studies, it has been well known that the amine has many pharmacological actions on a variety of organs. To evaluate the role of histamine in pain perception, we generated HDC knockout mice using a gene targeting method. Histamine is a hydrophilic autacoid, and in most tissues it is stored and s...

متن کامل

Deletion of histidine decarboxylase (HDC) enhances the antinociceptive effects of orexin A in the central nervous system

It has long been established that histamine plays a role as a mediator of inflammation. From numerous studies, it has been well known that the amine has many pharmacological actions on a variety of organs. To evaluate the role of histamine in pain perception, we generated HDC knockout mice using a gene targeting method. Histamine is a hydrophilic autacoid, and in most tissues it is stored and s...

متن کامل

The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders.

Brain histaminergic neurons play a prominent role in arousal and maintenance of wakefulness (W). H(3)-receptors control the activity of histaminergic neurons through presynaptic autoinhibition. The role of H(3)-receptor antagonists/inverse agonists (H(3)R-antagonists) in the potential therapy of vigilance deficiency and sleep-wake disorders were studied by assessing their effects on the mouse c...

متن کامل

Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models.

To determine the respective role played by orexin/hypocretin and histamine (HA) neurons in maintaining wakefulness (W), we characterized the behavioral and sleep-wake phenotypes of orexin (Ox) knock-out (-/-) mice and compared them with those of histidine-decarboxylase (HDC, HA-synthesizing enzyme)-/- mice. While both mouse strains displayed sleep fragmentation and increased paradoxical sleep (...

متن کامل

Basal forebrain and saporin cholinergic lesions: the devil dwells in delivery details.

1. McGinty D, Szymusiak R. Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep. Trends Neurosci 1990;13:480-7. 2. Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol 2004;73:379-96. 3. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 17  شماره 

صفحات  -

تاریخ انتشار 2002